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GREET capabilities for LCA of petroleum-based fuels

 Crude types
– Conventional crude (domestic and imported)
– Canadian oil sands
– Shale oil (e.g., Bakken and Eagle Ford)

 Refining products
– Gasoline blendstock, diesel, jet, residual oil, LPG, pet coke, crude naphtha
– Asphalt, propane, butane, propylene (2019)

 Energy and environmental metrics
– Energy intensities of total, fossil (petroleum, gas, coal), renewable (biomass, hydro, wind, solar), nuclear, …
– Water use intensities
– GHG emission intensities (and CO2, CH4, and N2O)
– Air pollutants’ emission intensities of VOC, CO, NOx, PM10, PM2.5, SOx, BC, and OC (2019)

 Regional results
– US PADD zones, selected states (e.g., CA)
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Crude recovery & transportation

 Analysis of energy and GHG emission intensities of 
8966 oil fields in 90 countries
– Use engineering-based model

• Oil Production Greenhouse Gas Emissions Estimator (OPGEE)
– Analyze field-specific characteristics

• Field depth, reservoir pressure, API gravity, gas/oil ratio, water/oil ratio, etc.
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Masnadi et al., “Global carbon intensity of crude oil production”, Science 361, 851-853, 2018
Masnadi et al., “Well-to-refinery emissions and net-energy analysis of China’s crude-oil supply”, Nature Energy, 3, 220-226, 2018



Crude recovery & transportation

 Cover all 27 major oil sands projects since 2008
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Energy use and GHG emissions of Canadian oil sands
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WTR system boundary includes:
• land disturbance by surface mining and 

in situ production
• bitumen recovery & separation
• bitumen upgrading
• flaring of gases
• fugitive emissions from tailing ponds 

and crude bitumen batteries
• electricity cogeneration in fields
• production/transmission of Canadian 

natural gas
• production/transportation of diluents

Cai et al., “Well-to-wheels greenhouse gas emissions of 
Canadian oil sands products: implications for 
US petroleum fuels”, Environ. Sci. Technol. 49, 
8219-8227, 2015 
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Crude recovery & transportation

 Estimate energy use and GHG emissions associated with the crude oil and NG extraction
– Based on data from 18,000+ wells drilled in the Bakken and Eagle Ford formations from 2006 to 2013
– Using Oil Production Greenhouse Gas Emissions Estimator (OPGEE) model 
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Energy use and GHG emissions of US shale oil
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Crude Types WTR Energy
(MJ/MJ)

WTR GHG
(g CO2-eq/MJ)

Bakken shale oil 0.039 9.59
Eagle Ford shale oil 0.031 5.08
US shale oil average 0.035 7.29
US conventional crudes 0.040 5.77

GREET1_2019

Brandt et al., “Energy Intensity and Greenhouse Gas Emissions from Crude Oil Production in the Bakken Formation: Input Data and Analysis Methods," 
Argonne National Laboratory, https://greet.es.anl.gov/publication-bakken-oil, 2015.

Ghandi et al., “Energy Intensity and Greenhouse Gas Emissions from Crude Oil Production in the Eagle Ford Region: Input Data and Analysis Methods," 
Argonne National Laboratory, https://greet.es.anl.gov/publication-eagle-ford-oil, 2015.

US shale oil have similar WTR energy intensities 
and a slightly higher GHG emissions intensities 
compared to US conventional crudes



Crude recovery & transportation

Crude Types – Sources Volume Shares (%) API Gravity WTR Energy (MJ/MJ) WTR GHG (g CO2-eq/MJ)
Conventional – US 49.8 32.0 0.04 5.8
Conventional – Canada 9.0 26.5 0.08 8.2
Conventional – Mexico 3.1 26.5 0.05 6.3
Conventional – Middle East 6.8 31.8 0.07 8.4
Conventional – Latin America 5.2 24.8 0.05 6.6
Conventional – Africa 2.2 38.3 0.06 7.1
Conventional – Other regions 1.4 32.0 0.05 6.9
Oil sands – Canada 8.0 17.8 1.32 24.8
Shale oil – US 14.6 45.3 0.04 7.3
Energy-Weighted Average 31.6 0.07 8.2
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Summary: Crude oil received by the US refineries in 2018
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 Differences in well-to-refinery gate (WTR) GHG emissions
– Conventional crudes

• transportation distance (e.g., US domestic vs. Middle East)
• transportation mode (e.g., Canadian via pipelines vs. Mexico via rail) 

– Canadian oil sands
• energy-intensive recovery processes, e.g., oil sands extraction, bitumen separation, and bitumen upgrading

– US shale oil
• methane flaring and venting, especially for the Bakken formation 

GREET1_2019



Petroleum refining

 Linear programming (LP) models of individual US refineries for process/unit-level analyses
– 43 large (>100 k bbl/d) US refineries with different configurations in 4 PADD regions in 2012 
– Close-to-reality process data and configurations
– Covering 70% of US refining capacity
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Characterize refineries at the process/unit level to derive product-specific results
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PADD
region Total LP 

modeling
I 921 404
II 3,451 2150
III 7,755 5983
IV 574 -
V 2,337 1956

Total 15,038 10493
LP Coverage: 84%

LP Coverage: 62%

LP Coverage: 77%

LP Coverage: 44%

Crude Input to Refineries (k bbl/day)

Elgowainy et al., “Energy Efficiency and Greenhouse 
Gas Emission Intensity of Petroleum Products 
at US Refineries," Environ. Sci. Technol. 48, 
7612-7624, 2014

Forman et al., “US Refinery Efficiency: Impacts 
Analysis and Implications for Fuel Carbon 
Policy Implementation," Environ. Sci. 
Technol. 48, 7625-7633, 2014

Han et al., “A Comparative Assessment of Resource 
Efficiency in Petroleum Refining,” Fuel, 157, 
292-298, 2015



Petroleum refining

 Purpose: derive product-specific results
– Estimate the energy and emissions burdens of 

individual intermediates within a refinery by 
allocating the burdens at the process/unit level

– Energy allocation by default
– Aggregate allocated burdens to final product pools
– Track destination of each flow within a refinery
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Refinery process/unit-level details are important for assigning energy inputs and emissions
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Petroleum refining

 Variations in product-specific results reflect the differences in refining pathways and the 
differences in energy intensities of related processes
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Product-specific refining efficiencies and energy intensities
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Petroleum refining

Sources of on-site refinery GHG emissions
– Combustion of purchased fuels

• e.g., purchased NG
– Combustion of internally produced fuels

• e.g., FCC coke and fuel gas
– Non-combustion emissions

• e.g., SMR
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Product-specific GHG emission intensities
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Well-to-product GHG emissions

 Sources of on-site refinery GHG emissions
– Combustion of purchased fuels

• e.g., purchased NG
– Combustion of internally produced fuels

• e.g., FCC coke and fuel gas
– Non-combustion emissions

• e.g., SMR

 Upstream GHG emissions
– Crude oil
– Purchased hydrogen
– Purchased natural gas
– Purchased electricity
– Purchased heavy
– Purchased butane
– Purchased blending stock
– etc.
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Product-specific GHG emission intensities
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Petroleum refining

 Market-value allocation
– Lower carbon intensities are assigned to products with lower market values

e.g., RFO, LPG, coke, propane, propylene, asphalt, etc.
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Process/unit–level allocation methods significantly affect product-specific results
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Products Price ($/mmBtu)

Gasoline BOB 17.7

Diesel 15.5

Jet 15.4

RFO 9.8

LPG 10.7

Coke 2.4

Butane 12.0

Propane 9.4

Propylene 12.0

Asphalt 7.3

Product prices in 2018 market (EIA)



Well-to-Wheels results

 WTW GHG emissions of petroleum fuels are dominated by end use release of CO2; 
refinery direct/indirect emissions a distant second
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Elgowainy et al., “Energy Efficiency and Greenhouse Gas Emission Intensity of Petroleum Products at US Refineries," Environ. Sci. Technol. 48, 7612-7624, 2014

Jet, RFO, and coke are less processed fuels, 
thus lower energy intensities

High C-content of RFO and coke increases 
their WTW GHG emission intensities



Petroleum refining CAP emissions

 Using EPA databases National Emission Inventory (NEI) and Greenhouse Gas Reporting 
Program (GHGRP) for emissions, and EIA database for energy uses and fuel productions
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Criteria air pollutant (CAP) emissions are updated in GREET 2019
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Sun et al., "Criteria Air Pollutant and Greenhouse Gases Emissions from US Refineries Allocated to Refinery Products," Environ. Sci. Technol. 53, 6556-6569, 2019

Refinery CAP emissions 
are allocated to individual 
refinery products, which 
are lower than those in 
previous GREET versions



Petroleum refining CAP emissions

 Refinery CAP emissions per crude input and per unit are also investigated
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Criteria air pollutant (CAP) emissions are updated in GREET 2019
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Sun et al., "Criteria Air Pollutant and Greenhouse Gases Emissions from US Refineries Allocated to Refinery Products," Environ. Sci. Technol. 53, 6556-6569, 2019



Petroleum refining water consumption

 Capacity shares
– Cracking 17%
– Light coking 63%
– Heavy coking 20%

 Refinery water consumption is 
directionally proportional to 
energy consumption and CO2
emissions
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Sun et al., "Estimation of U.S. refinery water consumption and allocation to refinery products," Fuel 221, 542-557, 2018



GREET petroleum module allows users to change all key input parameters

 How to change the shares of crude oil 
sources
– “Inputs” tab 
– Section “3.1 a) Share of crude oil sources”
– Set Cell E21 to 2 (User-defined)
– Change the user defined share in Row 24 and 32

 How to change refining efficiencies
– “Inputs” tab 
– Section “3.3) Petroleum Refining Efficiency”
– Choose Simulation scenarios (E63) from 0 to 8
– When 0 is selected, a user can directly enter the 

refining efficiency of each product to Row 78 
(Efficiency defined in the time-series tables)
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Please visit
http://greet.es.anl.gov

for:
• GREET models

• GREET documents 
• LCA publications

• GREET-based tools and calculators  

Amgad Elgowainy aelgowainy@anl.gov
Zifeng Lu zlu@anl.gov
Pingping Sun psun@anl.gov

http://greet.es.anl.gov/
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